Durante esta etapa de lanzamiento de nuestro nuevo sitio web, escríbenos tus dudas, consultas o comentarios al WhatsApp +569 3455 2723.

Cargando Eventos

« Todos los Eventos

  • Este evento ha pasado.

Seminario Académico de Economía “Learning in Random Utility Models via Online Decision Problems”

Noviembre 29, 2021 @ 15:00

seminario unab uah

La Facultad de Economía y Negocios de la Universidad Alberto Hurtado en conjunto con la Facultad de Economía y Negocios de la Universidad Andrés Bello, tienen el agrado de invitarte a un nuevo Seminario Académico de Economía 2021.

En esta ocasión Emerson Melo, assistant professor at the Department of Economics at Indiana University Bloomington, presentará su trabajo “Learning in Random Utility Models via Online Decision Problems”.

Abstract:

This paper studies the Random Utility Model (RUM) in environments where the decision maker is imperfectly informed about the payoffs associated to each of the alternatives he faces. By embedding the RUM into an online decision problem, we make four contributions. First, we propose a gradient-based learning algorithm and show that a large class of RUMs are Hannan consistent (Hannan, 1957); that is, the average difference between the expected payoffs generated by a RUM and that of the best fixed policy in hindsight goes to zero as the number of periods increase. Second, we show that the class of Generalized Extreme Value (GEV) models can be implemented with our learning algorithm. Examples in the GEV class include the Nested Logit, Ordered, and Product Differentiation models among many others. Third, we show that our gradient-based algorithm is the dual, in a convex analysis sense, of the Follow the Regularized Leader (FTRL) algorithm, which is widely used in the Machine Learning literature. Finally, we discuss how our approach can incorporate recency bias and be used to implement prediction markets in general environments.

Transmisión plataforma Zoom

Detalles

Fecha:
Noviembre 29, 2021
Hora:
15:00
Categoría del Evento: